Semantics for ∀ and ∃ The Aristotelian Forms Complex Quantifier Phrases	Semantics for ∀ and ∃ The Aristotelian Forms Complex Quantifier Phrases Announcements 03.26
Translating with Quantifiers From English to \forall and \exists	• Something
William Starr	
03.26.09	
William Starr — Translating with Quantifiers (Phil 201.02) — Rutgers University 1/40	William Starr — Translating with Quantifiers (Phil 201.02) — Rutgers University 2/40
Semantics for ∀ and ∃ The Aristotelian Forms Complex Quantifier Phrases Outline	Semantics for ∀ and ∃ The Aristotelian Forms Complex Quantifier Phrases Satisfaction The Basic Idea
	• Remember truth tables don't allow us to analyze the meaning of quantified sentences
① Semantics for \forall and \exists	 Instead, we use Alfred Tarski's (1936) idea of an object satisfying a formula
2 The Aristotelian Forms	 Here's the intuition behind satisfaction Although a formula with a free variable like Cube(x) is
Complex Quantifier Phrases	 Although a formula with a free variable fike Cube(x) is neither true nor false, we can think of it being true of some object <i>o</i> Tarski called this special idea of being true of an object <i>satisfaction</i> For example, <i>o</i> satisfies Small(x) ∧ Cube(x) iff <i>o</i> is a small cube

Semantics for \forall and \exists The Aristotelian Forms Complex Quantifier Phrases

Satisfaction The Precise Definition

Definition of Satisfaction

An object o satisfies a wff S(x) containing x as its only free variable iff the following two conditions are met:

- If we give a o a name that's not in use, call it $n_i,$ then $\mathsf{S}(n_i)$ is true
- O $S(n_i)$ is the result of replacing \underbrace{every} occurrence of x in S(x) with n_i
- Let's work through a quick example in Tarski's World

Semantics for \forall and \exists The Aristotelian Forms Complex Quantifier Phrases

Existential Statements When are They True?

- Given the idea of satisfaction, we can say when quantified statements are true
- Before we review the semantics for ∃, let's review the intuitive meaning of existential statements
- Something is strange is true iff there is some object o and o is strange
- The truth of ∃x Strange(x) can be determined in a similar way:
 - ∃x Strange(x) is true iff some object o satisfies
 Strange(x)
 - That is, if there is some object *o* such that when you give it an unused name n, Strange(n) comes out true
 - If there is no such object, $\exists x Strange(x)$ is false

William Starr — Translating with Quantifiers (Phil 201.02) — Rutgers University

9/40

Semantics for \forall and \exists The Aristotelian Forms Complex Quantifier Phrase

Existential Statements The Game Rule for \exists

Game Rule for \exists

Given $\exists x S(x)$:

Your Commitment	Player to Move	Goal
TRUE	you	Choose some o
		that satisfies
FALSE	Tarski's World	S(x)

- S(x) is any wff containing a free occurrence of x:
 - Cube(x)
 - Cube(\mathbf{x}) $\land \exists \mathbf{y} \mathsf{Small}(\mathbf{y})$
 - $\neg(\forall y \operatorname{Tet}(y) \rightarrow (\operatorname{Small}(x) \lor \operatorname{Cube}(a)))$
- Let's play some games in Tarski's World!

William Starr — Translating with Quantifiers (Phil 201.02) — Rutgers University

Semantics for \forall and \exists The Aristotelian Forms Complex Quantifier Phrase

Existential Statements

Official Semantics

Semantics for \exists

 $\exists x\, S(x)$ is true iff there is at least one object that satisfies S(x)

Example

When is $\exists x (Large(x) \land Tet(x))$ true?

- By the semantics for \exists :
 - (1) Iff there is at least one object that satisfies $Large(x) \wedge Tet(x)$
- By the definition of satisfaction (1) amounts to:
 - Iff when we give o some unused name n, $\mathsf{Large}(n) \land \mathsf{Tet}(n)$ comes out true

7/40

semantics for \forall and \exists The Aristotelian Forms Complex Quantifier Phrases

Universal Statements When are They True?

- When are universal statements are true?
- Before we review our precise answer, let's recall some basic intuitions
- *Everything is on fire* is true iff for every object *o*, *o* is on fire
- The truth of $\forall x \operatorname{OnFire}(x)$ can be determined in a similar way:
 - Consider whether every object *o* in the domain of discourse satisfies OnFire(x)
 - That is, for every object *o* see whether when you give it an unused name n, OnFire(n) comes out true
 - If so, then $\forall x \operatorname{OnFire}(x)$ is true
 - Otherwise, it is false
- Okay, let's see that precise definition

William Starr — Translating with Quantifiers (Phil 201.02) — Rutgers University

13/40

Semantics for ∀ and ∃ The Aristotelian Forms Complex Quantifier Phrase

Universal Statements

The Game Rule for \forall

Game Rule for \forall

Given $\forall x S(x)$:

Your Commitment	Player to Move	Goal
TRUE	Tarski's World	Choose some o
		that does not
FALSE	you	satisfy $S(x)$

- $\bullet\,$ As always $\mathsf{S}(\mathsf{x})$ is any wff containing a free occurrence of x
- Let's play some games in Tarski's World!

Semantics for \forall and \exists The Aristotelian Forms Complex Quantifier Phrases

Universal Statements Official Semantics

Semantics for \forall

 $\forall x\, S(x)$ is true iff every object satisfies S(x)

Example

When is $\forall x (Cube(x) \land Small(x))$ true?

- By the semantics for \forall :
 - (2) Iff every object o satisfies $Cube(x) \land Small(x)$
- By the definition of satisfaction (2) amounts to:
 - Iff when we give each *o* some unused name n, Cube(n) ∧ Small(n) comes out true
- Let's go to Tarski's World and evaluate some universal claims

William Starr — Translating with Quantifiers (Phil 201.02) — Rutgers University

14/40

Semantics for V and 3 The Aristotelian Forms Complex Quantifier Phrases Semantics for the Quantifiers

- We have learn two methods for understanding the meaning of ∀ and ∃:
 - $\textcircled{\sc 0}$ Our satisfaction-based definition of when $\forall\, S(x)$ and $\exists x\, S(x)$ are true
 - Our game-rule definition, which says how committing to the truth or falsity of a quantified formula affects a game based on that formula
- We just saw the deep parallel in these two methods
- The game just carries you through the steps you'd go through if you applied the semantics for ∀ or ∃ and then the definition of satisfaction

The Four Aristotelian Forms What they Are

The Four Aristotelian Forms

- All A's are B's
- Some A's are B's
- No A's are B's
- Some A's are not B's
- These are four of the most common quantificational sentences used in quantificational reasoning
- We can represent all of them in FOL now that we have \forall and \exists
- Today, we'll learn how!

William Starr —	Translating with	Quantifiers	(Phil 201.02) —	Rutgers University

18/40

emantics for ∀ and ∃ The Aristotelian Forms Complex Quantifier Phrases The Second Aristotelian Form

Some A's are B's

The Form: Some A's are B's

(4) Some professors are vicious

Paraphrase Some thing *x* is both professor and vicious Translation $\exists x (Professor(x) \land Vicious(x))$

 \bullet This translation has the form: $\exists x \left(\mathsf{A}(x) \land \mathsf{B}(x) \right)$

General Fact

Some A's are B's translates as $\exists x (A(x) \land B(x))$

Semantics for ∀ and ∃ The Aristotelian Forms Complex Quantifier Phrase

The First Aristotelian Form All A's are B's

The Form: All A's are B's

(3) All rabbits are vicious

Paraphrase For every x, if x is a rabbit then x is vicious

Translation $\forall x (\mathsf{Rabbit}(x) \rightarrow \mathsf{Vicious}(x))$

 \bullet This translation has the form: $\forall x \, (\mathsf{A}(x) \to \mathsf{B}(x))$

General Fact

All A's are B's translates as $\forall x (A(x) \rightarrow B(x))$

William Starr — Translating with Quantifiers (Phil 201.02) — Rutgers University

19/40

The Second Aristotelian Forms Complex Quantifier Phrases Comments

- We've learned two facts:
 - All As are Bs translates as $\forall x (A(x) \rightarrow B(x))$
 - **2** Some As are Bs translates as $\exists x (A(x) \land B(x))$
- Why don't we translate Some As are Bs as $\exists x (A(x) \rightarrow B(x))$?
- We'll see this by doing exercise 9.8

emantics for \forall and \exists The Aristotelian Forms Complex Quantifier Phrases

The Third Aristotelian Form No A's are B's

The Form: No A's are B's

(5) No students are drunkParaphrase 1 For every x, if x is a student then x is not drunk

Paraphrase 2 It is not the case that for some x, x is a student and x is drunk

- $\begin{array}{l} \mbox{Translation 1} & \forall x \, (\mbox{Student}(x) \rightarrow \neg \mbox{Drunk}(x)) \\ \mbox{Translation 2} & \neg \exists x \, (\mbox{Student}(x) \wedge \mbox{Drunk}(x)) \end{array}$
- \bullet Translation 1 has the form: $\forall x \, (A(x) \rightarrow \neg B(x))$
- Translation 2 has the form: $\neg \exists x (A(x) \land B(x))$
- These are equivalent, and we'll eventually prove it

Villiam Starr	Translating wi	th Ouantifiers	(Phil 201.02) —	 Rutgers University
villani Stari	franslating wi	un quantineis	(1 111 201.02)	Rutgers Oniversity

22/40

Semantics for ∀ and ∃ The Aristotelian Forms Complex Quantifier Phrases The Fourth Aristotelian Form

Some A's are not B's

The Form: Some A's are not B's

- (6) Some excuses are not believable
 - Paraphrase For some x, x is an excuse and x is not believable

Translation $\exists x (Excuse(x) \land \neg Believable(x))$

 \bullet This translation has the form: $\exists x \left(\mathsf{A}(x) \land \neg \mathsf{B}(x) \right)$

General Fact

Some A's are not B's translates as $\exists x (A(x) \land \neg B(x))$

emantics for \forall and \exists The Aristotelian Forms Complex Quantifier Phrases

The Third Aristotelian Form No A's are B's (Continued)

General Fact

Or:

No A's are B's translates as:

 $\forall x \left(A(x) \rightarrow \neg B(x) \right)$

 $\neg \exists x (A(x) \land B(x))$

William Starr — Translating with Quantifiers (Phil 201.02) — Rutgers University

23/40

emantics for ∀ and ∃ The Aristotelian Forms Complex Quantifier Phrase The 4 Aristotelian Forms Summary

The Aristotelian Forms and Their Translations

 $\begin{array}{ll} All \ A's \ are \ B's & \forall x \left(\mathsf{A}(\mathsf{x}) \to \mathsf{B}(\mathsf{x}) \right) \\ Some \ A's \ are \ B's & \exists x \left(\mathsf{A}(\mathsf{x}) \land \mathsf{B}(\mathsf{x}) \right) \\ No \ A's \ are \ B's & \forall x \left(\mathsf{A}(\mathsf{x}) \to \neg \mathsf{B}(\mathsf{x}) \right) \\ Some \ A's \ are \ not \ B's & \exists x \left(\mathsf{A}(\mathsf{x}) \land \neg \mathsf{B}(\mathsf{x}) \right) \end{array}$

emantics for \forall and \exists The Aristotelian Forms Complex Quantifier Phrases

Beyond the Second Form What to Do

• Translate:

- (7) Some cubes are in front of c
- It has the second form: *Some A's are B's*. So:

$$\exists x (Cube(x) \land FrontOf(x, b))$$

- What about:
 - (8) Some small cubes are in front of cThat's not one of the forms we know!
- Still, it's pretty obvious how it should go:

William Starr — Translating with Quantifiers (Phil 201.02) — Rutgers University	
---	--

28/40

Semantics for 4 and 3 The Aristotelian Forms Complex Quantifier Phrases Beyond the First Form What to Do?

- Translate:
 - (12) All cubes are in front of c
- It's form is All A's are B's, so:

 $\forall x (Cube(x) \rightarrow FrontOf(x, b))$

- What about:
 - (13) All small cubes are in front of \boldsymbol{c}
- That's not one of the forms we know!

Semantics for \forall and \exists $\mbox{ The Aristotelian Forms }$ Complex Quantifier Phrases

Beyond the Second Form Multiply Restricted Existentials

- From the second form, we know that you restrict ∃
 with ∧
- An existential quantifier multiply restricted means multiple conjuncts restricting ∃:
- (9) Some cute little kitten ate Alex

 $\exists x \left(\mathsf{Cute}(x) \land \mathsf{Little}(x) \land \mathsf{Kitten}(x) \land \mathsf{Ate}(x, \mathsf{alex})\right)$

(10) A small rat scared Jay

 $\exists x \left(\mathsf{Small}(x) \land \mathsf{Rat}(x) \land \mathsf{Scared}(x, \mathsf{jay})\right)$

(11) At least one small cube in front of \boldsymbol{b} is left of \boldsymbol{c}

 $\exists x \, (\mathsf{Small}(x) \land \mathsf{Cube}(x) \land \mathsf{FrontOf}(x,b) \land \mathsf{LeftOf}(x,c))$

William Starr — Translating with Quantifiers (Phil 201.02) — Rutgers University

Semantics for V and 3 The Aristotelian Forms Complex Quantifier Phrases Beyond the First Form What to Do

- We know that you restrict \forall with \rightarrow (1st Form)
- A universal quantifier multiply restricted means multiple restrictions of ∀ with →:
- (14) All cute little kittens hate Alex

 $\forall x \left(\mathsf{Cute}(x) \rightarrow (\mathsf{Little}(x) \rightarrow (\mathsf{Kitten}(x) \rightarrow \mathsf{Hate}(x, \mathsf{alex})))\right)$

(15) Every small rat scared Jay

 $\forall x \left(\mathsf{Small}(x) \rightarrow (\mathsf{Rat}(x) \rightarrow \mathsf{Scared}(x, \mathsf{jay}))\right)$

(16) Every small cube in front of \boldsymbol{b} is left of \boldsymbol{c}

 $\forall x \left(\mathsf{Small}(x) \rightarrow \left(\mathsf{Cube}(x) \rightarrow \left(\mathsf{FrontOf}(x, b) \rightarrow \mathsf{LeftOf}(x, c) \right) \right) \right)$

29/40

 $[\]exists x \left(\mathsf{Small}(x) \land \mathsf{Cube}(x) \land \mathsf{FrontOf}(x, b)\right)$

Semantics for \forall and \exists The Aristotelian Forms Complex Quantifier Phrases

Beyond the First Form Using \land Instead of \rightarrow

• Instead of nesting →, you can use conjoin the restrictions into one:

$$\forall x \left(\mathsf{Cute}(x) \rightarrow \left(\mathsf{Little}(x) \rightarrow (\mathsf{Kitten}(x) \rightarrow \mathsf{Hate}(x, \mathsf{alex}))\right)\right)$$

Is Equivalent to:

$$\forall x \left((\mathsf{Cute}(x) \land \mathsf{Little}(x) \land \mathsf{Kitten}(x)) \rightarrow \mathsf{Hate}(x, \mathsf{alex}) \right)$$

• This is because of the following general equivalence:

$$\mathsf{A} \to (\mathsf{B} \to \mathsf{C}) \iff (\mathsf{A} \land \mathsf{B}) \to \mathsf{C}$$

Semantics for \forall and \exists The Aristotelian Forms Complex Quantifier Phrases

Subjects and Objects Some Terminology

- Some predicates like *love* relate two things: (17) Kay loves Jay
- When you have a predicate that relates two things, it's helpful to have some terminology to distinguish those two things
- *Kay* is the subject
- Jay is the object
- Intuitively, the subject is what the sentence is primarily about

William Starr — Translating with Quantifiers (Phil 201.02) — Rutgers University

35/40

Semantics for \forall and \exists The Aristotelian Forms Complex Quantifier Phrases

Roaming Quantifiers In Object Position

William Starr — Translating with Quantifiers (Phil 201.02) — Rutgers University

nantics for \forall and \exists The Aristotelian Forms Complex Quantifier Phrase

- So far, we've only considered sentences with quantifiers in subject-position:
 - (18) Every cube is in front of \boldsymbol{b}
- What about when you have a quantifier in object-position?
 - (19) **b** is in front of everything
- Just stick \forall out in front of the predicate, and 'quantify into' the object position

 $\forall x \operatorname{FrontOf}(b, x)$

Roaming Quantifiers More on Object Position

- Okay, but what happens when the quantifier in object position is restricted
 - (20) b is in front of every cube
- You have to move its restrictor out front too:
 (20') ∀x (Cube(x) → FrontOf(b, x))
- This holds for **multiply restricted** ones too:
 - (21) \boldsymbol{b} is in front of every small cube

Translates as:

 $(21') \ \forall x ((\mathsf{Cube}(x) \land \mathsf{Small}(x)) \rightarrow \mathsf{FrontOf}(\mathsf{b}, \mathsf{x}))$

33/40

iemantics for \forall and \exists The Aristotelian Forms Complex Quantifier Phrases

Roaming Quantifiers Some More Examples

(22) shows that you move the restrictors to the left of the predicate, but no further!

- (22) a. It's not the case that b is a large cube
 b. ¬∃y (Large(y) ∧ Cube(y) ∧ b = y)
- (23) a. It's not the case that something is a large cube
 b. ¬∃y (Large(y) ∧ Cube(y) ∧ ∃x x = y)
- (24) a. Everything between c and b is ab. $\forall x (Between(x, c, b) \rightarrow x = a)$
- (25) a. Everything between c and b is a cube
 - b. $\forall x (Between(x, c, b) \rightarrow \exists y (Cube(y) \land x = y))$

William Starr — Translating with Quantifiers (Phil 201.02) — Rutgers University

38/40

Semantics for ∀ and ∃ The Aristotelian Forms Complex Quantifier Phrases An Oddity Existentials in Conditionals are Universal?

• Most people get the intuition that:

(26) If a yokel drools, he snores Is equivalent to:

- (28) Every yokel who drools snores
- But then (26) shouldn't be translated with ∃ as in (27), but rather:
 - (29) $\forall x ((Yokel(x) \land Drools(x)) \rightarrow Snores(x))$
- So, beware, in conditionals, existentials sound like universals

Semantics for \forall and \exists $\mbox{ The Aristotelian Forms }$ Complex Quantifier Phrases

An Oddity Existentials in Conditionals

- Consider:
 - (26) If a yokel drools, he snores
- a is existential, right?
- So, it seems like we should translate (26) as:

(27) $\exists x ((Yokel(x) \land Drools(x)) \rightarrow Snores(x))$

• This requires at least one yokel that drools to snore

39/40

• Is that strong enough?

William Starr — Translating with Quantifiers (Phil 201.02) — Rutgers University