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Q@ HWG is due now

© The midterm is a week from today!

@ The practice midterm/HWT7 is available now
Q Class this Thursday (03.05) will be a review

o We will work through select problems from the
practice midterm
@ So bring your questions
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Material Conditional

Modus Ponens

Modus Ponens

Truth Table for —

PIQIIP—-Q If you have established P — Q
T T T and P, then you can infer Q

T | F F

F|T T @ This rule is also known as
F | F T conditional elimination

@ Why is modus ponens correct?

o If P— QisTand Pis T, then Q must be T
e So when you have P — Q and P, you have Q!
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Modus Ponens at Work

A Simple Application of Modus Ponens

The Method of Conditional Proof

Suppose you are told that if a is a cube, then it is small, and that a is .
indeed a cube. Then it follows by modus ponens that a is small. To prove P — Q, temporarily assume P. If you can show Q
Symbolically: with this additional assumption, you can infer P — Q

Cube(a) — Small(a) and Cube(a), therefore Small(a).

Truth Table for — @ The only way for P — Q to

| A

Modus Ponens Again P P be F is for P to be true and
Suppose you are told that if a is either a cube or a tetrahedron, then Q —Q QberF
a is in the same row as b, and that a is a cube. Then it follows that a T T T . }
is a cube or a tetrahedron. So by modus ponens, it follows that a is in T | F F ® So, if yo‘u can bhOW that
the same row as b. Symbolically: FlT T when P is T Q is also T,

Y
We are given that (Cube(a) V Tet(a)) — SameRow(a, b) and Cube(a). F | F T you've shown thé.lt P Q
By the second claim: Cube(a) V Tet(a) follows. Then by modus » fzannot be false, i.e. that it
ponens it follows that SameRow(a, b). is true!
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Conditional Proof Conditional Proof

An Example Another Example

Let’s use conditional proof and modus ponens to give a

proof of: ARGUMENT 1 Let’s do exercise 8.4 on the chalkboard

Tet(a) — Tet(b) 8.4 | The unicorn, if horned, is elusive and dangerous.

Tet(b) — Tet(c) If elusive or mythical, the unicorn is rare.

Tet(a) = Tet(c) If a mammal, the unicorn is not rare.

Our goal is a conditional, so we use conditional proof. . . .
The unicorn, if horned, is not a mammal.

Proof: Suppose Tet(a). Then by premise 1 Tet(b) follows

by modus ponens. But then we may now again use modus Give an informal proof of the validity of this argument,
ponens and premise 2 to infer Tet(c). This is the using conditional proof.

consequent of our goal, so we have successfully completed

our conditional proof.
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The Material Biconditional

Elimination

Biconditional Elimination

Truth Table for «

Pl Q| P<Q

If you have established either
T P+ Qor Q« P and P, then
you can infer Q.

Biconditional Elimination Example

Suppose you are told that a is in the same column as b if
and only if a is a tetrahedron, and that a is tetrahedron.

Then by biconditional elimination, it follows that a is in

the same column as b. Symbolically:

SameCol(a, b) <> Tet(a) and Tet(a), so SameCol(a, b).

T | T
T F F
F T F
F|F T @ This rule is also known as
biconditional elimination

@ Why is this correct?

o If P+ Qis T and P is T, then Q must be T
e Similarly, if P <~ Q is T and Q is T, then P is T
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Proving Biconditionals Proving A Biconditional

Conditional Proof Twice Over An Example

Let’s give an informal proof of this argument:
Cube(a) < Cube(b)
Cube(b) «» Cube(c)

How to Prove a Biconditional

To prove P « Q, first, use conditional proof to prove
P — Q. Then use conditional proof again to prove Q — P.

Showing these two conditionals suffices to prove the Cube(a) < Cube(c)
biconditional. : . . .
Our goal is a biconditional, so we do two conditional proofs.
. o . Proof:
@ How do you prove a biconditional like P < Q7 oo . N
@ First we'll show Cube(a) — Cube(c) by conditional proof. Suppose Cube(a).
o We know that P — Q 1s Cquivalcnt to Then from premise 1 Cube(b) follows by biconditional elimination. From
this and premise 2 it follows by biconditional elimination again that
(P - Q) A (Q - P) Cube(c). So, Cube(a) — Cube(c)
@ But we know how to prove (P — Q) A (Q — P) @ Now we'll show Cube(c) — Cube(a) by conditional proof. Suppose Cube(c).
L Then from premise 2 Cube(b) follows by biconditional elimination. From
o Use conditional prOOf to show P — Q this and premise 1 it follows by biconditional elimination again that
e Then use conditional proof to show Q — P Cube(a). So, Cube(c) — Cube(a).

By these two conditional proofs, it follows that Cube(a) < Cube(c)
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Proving a Biconditional

In Class Exercise Additional Steps

Exercise 8.5: Construct an informal proof of the argument. Some additional equivalences that are useful for informal
Here’s the argument translated into FOL. proofs:
(Horned(u) — (Elusive(u) A Magical(u))) M s
P—Q — -Q — =P
A (—Horned(u) — (—Elusive(u) A =Magical(u))) P—Q — -PVvQ
—Horned(u) — —Mythical(u) ~(P—-Q PA=Q
. . . PoQ <— (P-QAQ—P)
Horned(u) < (Magical(u) V Mythical(u)) PeQ — (PAQ) V(=P A-Q)
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Conditional Elimination An Example

Formalizing Modus Ponens Using — Elim

Modus Ponens

Let’s construct a formal proof for this argument:

If you have established P — Q P Q
and P, then you can infer Q ‘ 8.31
o A simple example: . (=Mythical(c) — Mammal(c)) A (Mythical(c) — —Mortal(c))
(=Mortal(c) V Mammal(c)) — Horned(c)
1 | Tet(a) — Tet(b) Horned(c) — Magical(c)
2 | Tet(a) > Q | ~Mythical(c) v Mythical(c)
3 Tet(b) — Elim: 1, 2 ‘ Magical(c)

@ — Elim is the formal counterpart to our informal rule
called modus ponens
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Formalizing Conditional Proof

Conditional Proof
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Conditional Rules

Another Example with — Elim & — Intro

To prove P — Q, temporarily P
assume P. If you can show Q with I
this additional assumption, you can

infer P — Q w/o this assumption Q
@ A simple example: >| P—Q
1 b=a
2 ‘ Tet(a)
3 ‘ Tet(b) = Elim: 1, 2
4 Tet(a) — Tet(b) — Intro: 2-3
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Let’s do exercise 8.32. This involves a formal version of the
informal proof we did for exercise 8.4. We will use the
informal proof to guide us.
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— Elim

Formalizing Biconditional Elimination

If you have established either P Q (orQ« P)
P+ Qor Q« P, and P, then

you can infer Q

Biconditional Elimination

@ A simple example: .
1 Tet(a) < Tet(b)
> Q
2 Tet(a) )

3 | Tet(b) o Elim: 1, 2

@ «— Elim is the formal counterpart to our informal rule
called biconditional elimination
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— Intro

Formalizing Biconditional Proof

Biconditional Proof

To prove P < Q use conditional proof

to show P — Q. Then use conditional P
proof again to show Q — P. .
@ One subproof amounts to showing Q
P—Q Q
@ The other amounts to showing :
Q — P P
>| P<Q
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— Elim & < Intro — Elim & < Intro

A Simple Example In Class Exercise

You constructed an informal proof for this argument, now

Let’s do a proof in Fitch for a simple example that uses turn this into a formal proof:

both < Intro and « Elim: 8.33 (Horned(c) — (Elusive(c) A Magical(c)))
8.25 Transitivity of the Biconditional A (—Horned(c) — (—Elusive(c) A =Magical(c)))
—Horned(c) — —Mythical(c)
A—B ?orned(c) ~ (Magical(c) V Mythical(c))
B—C
A~ C Hint: You should do two subproofs and then apply « Intro to get the conclusion

@ 1n the first subproof, assume Horned(c), show Magical(c) V Mythical(c)

@ In the second one, assume Magical(c) V Mythical(c), show Horned(c). It may
be easier to show Horned(c) using indirect proof (assume —Horned(c) and
derive 1)
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