Informal Proofs Formal Proofs	Informal Proofs Formal Proofs Announcements For 06.11.08
The Logic of Conditionals Informal & Formal Proofs	 HW6 is due now The midterm is a week from today! The practice midterm/HW7 is available now
William Starr	 Class this Thursday (03.05) will be a review We will work through select problems from the practice midterm
03.03.09	• So bring your questions
William Starr — The Logic of Conditionals (Phil 201.02) — Rutgers University 1/30	William Starr — The Logic of Conditionals (Phil 201.02) — Rutgers University 2/30
Informal Proofs Formal Proofs Outline	Informal Proofs Formal Proofs Material Conditional Modus Ponens
1 Informal Proofs	Truth Table for \rightarrow Modus Ponens $P Q P \rightarrow Q$ If you have established $P \rightarrow Q$ T T TT
2 Formal Proofs	T T T T F F F T T T • This rule is also known as

- conditional elimination
- Why is modus ponens correct?

Т

F F

- $\bullet~{\rm If}~P\to Q~{\rm is}~\tau$ and $P~{\rm is}~\tau,$ then $Q~{\rm must}$ be τ
- $\bullet\,$ So when you have $\mathsf{P}\to\mathsf{Q}$ and $\mathsf{P},$ you have $\mathsf{Q}!$

Material Conditional

Modus Ponens at Work

A Simple Application of Modus Ponens

Suppose you are told that if a is a cube, then it is small, and that a is indeed a cube. Then it follows by modus ponens that a is small. Symbolically:

 $\mathsf{Cube}(\mathsf{a}) \to \mathsf{Small}(\mathsf{a}) \ \mathrm{and} \ \mathsf{Cube}(\mathsf{a}), \ \mathrm{therefore} \ \mathsf{Small}(\mathsf{a}).$

Modus Ponens Again

Suppose you are told that if a is either a cube or a tetrahedron, then a is in the same row as b, and that a is a cube. Then it follows that a is a cube or a tetrahedron. So by modus ponens, it follows that a is in the same row as b. Symbolically:

We are given that $(Cube(a) \lor Tet(a)) \rightarrow SameRow(a, b)$ and Cube(a). By the second claim: $Cube(a) \lor Tet(a)$ follows. Then by modus ponens it follows that SameRow(a, b).

William Starr — The Logic of Conditionals (Phil 201.02) — Rutgers University

7/30

nformal Proofs Formal Proofs

Conditional Proof An Example

Let's use conditional proof and modus ponens to give a proof of:

Argument 1

$$\begin{array}{l} {\sf Tet}({\sf a}) \to {\sf Tet}({\sf b}) \\ \\ {\sf Tet}({\sf b}) \to {\sf Tet}({\sf c}) \\ \\ \hline \\ {\sf Tet}({\sf a}) \to {\sf Tet}({\sf c}) \end{array}$$

Our goal is a conditional, so we use conditional proof.

Proof: Suppose Tet(a). Then by premise 1 Tet(b) follows by modus ponens. But then we may now again use modus ponens and premise 2 to infer Tet(c). This is the consequent of our goal, so we have successfully completed our conditional proof.

Informal Proofs Formal Proofs

Conditional Proof

The Method of Conditional Proof

To prove $P \to Q$, temporarily assume P. If you can show Q with this additional assumption, you can infer $P \to Q$

Truth Table for $ ightarrow$		
Ρ	Q	$P\toQ$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

- The only way for $P \rightarrow Q$ to be F is for P to be true and Q be F
- So, if you can show that when P is T Q is also T, you've shown that P → Q cannot be false, i.e. that it is true!

William Starr — The Logic of Conditionals (Phil 201.02) — Rutgers University

Let's do $\mathbf{exercise}~\mathbf{8.4}$ on the chalkboard

8.4 | The unicorn, if horned, is elusive and dangerous.

If elusive or mythical, the unicorn is rare.

If a mammal, the unicorn is not rare.

The unicorn, if horned, is not a mammal.

Give an informal proof of the validity of this argument, using conditional proof.

The Material Biconditional Elimination

$Truth Table for \leftrightarrow$		
Ρ	Q	$P \leftrightarrow Q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т
	_	

Biconditional Elimination

If you have established either $P \leftrightarrow Q$ or $Q \leftrightarrow P$ and P, then you can infer Q.

• This rule is also known as biconditional elimination

- Why is this correct?
 - $\bullet~\mbox{If}~\mathsf{P}\leftrightarrow\mathsf{Q}~\mbox{is}~\tau$ and $\mathsf{P}~\mbox{is}~\tau,$ then $\mathsf{Q}~\mbox{must}~\mbox{be}~\tau$
 - $\bullet\,$ Similarly, if $\mathsf{P}\leftrightarrow\mathsf{Q}$ is τ and Q is $\tau,$ then P is τ

William Starr — The Logic of Conditionals (Phil 201.02) — Rutgers University

12/30

nformal Proofs Formal Proofs

Proving Biconditionals Conditional Proof Twice Over

How to Prove a Biconditional

To prove $\mathsf{P} \leftrightarrow \mathsf{Q}$, first, use conditional proof to prove $\mathsf{P} \to \mathsf{Q}$. Then use conditional proof again to prove $\mathsf{Q} \to \mathsf{P}$. Showing these two conditionals suffices to prove the biconditional.

- How do you prove a biconditional like $\mathsf{P} \leftrightarrow \mathsf{Q}$?
- We know that $P \rightarrow Q$ is equivalent to $(P \rightarrow Q) \land (Q \rightarrow P)$
- But we know how to prove $(P \rightarrow Q) \land (Q \rightarrow P)$:
 - $\bullet~$ Use conditional proof to show $\mathsf{P}\to\mathsf{Q}$
 - $\bullet\,$ Then use conditional proof to show $\mathsf{Q}\to\mathsf{P}\,$

Informal Proofs Formal Proofs

The Material Biconditional Elimination

Biconditional Elimination Example

Suppose you are told that a is in the same column as b if and only if a is a tetrahedron, and that a is tetrahedron. Then by biconditional elimination, it follows that a is in the same column as b. Symbolically:

 $\mathsf{SameCol}(\mathsf{a},\mathsf{b}) \leftrightarrow \mathsf{Tet}(\mathsf{a}) \text{ and } \mathsf{Tet}(\mathsf{a}), \text{ so } \mathsf{SameCol}(\mathsf{a},\mathsf{b}).$

William Starr — The Logic of Conditionals (Phil 201.02) — Rutgers University

13/30

Informal Proofs Formal Proofs Proving A Biconditional

<u>An</u> Example

Let's give an informal proof of this argument:

 $\begin{tabular}{c} Cube(a) \leftrightarrow Cube(b) \\ \hline Cube(b) \leftrightarrow Cube(c) \\ \hline Cube(a) \leftrightarrow Cube(c) \\ \hline \end{tabular}$

Our goal is a biconditional, so we do two conditional proofs.

Proof:

- Isrst we'll show Cube(a) → Cube(c) by conditional proof. Suppose Cube(a). Then from premise 1 Cube(b) follows by biconditional elimination. From this and premise 2 it follows by biconditional elimination again that Cube(c). So, Cube(a) → Cube(c)
- Now we'll show $Cube(c) \rightarrow Cube(a)$ by conditional proof. Suppose Cube(c). Then from premise 2 Cube(b) follows by biconditional elimination. From this and premise 1 it follows by biconditional elimination again that Cube(a). So, $Cube(c) \rightarrow Cube(a)$.

By these two conditional proofs, it follows that $\mathsf{Cube}(\mathsf{a}) \leftrightarrow \mathsf{Cube}(\mathsf{c})$

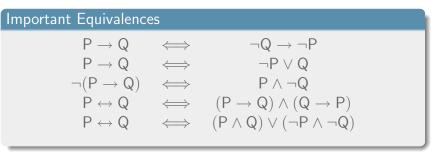
In Class Exercise

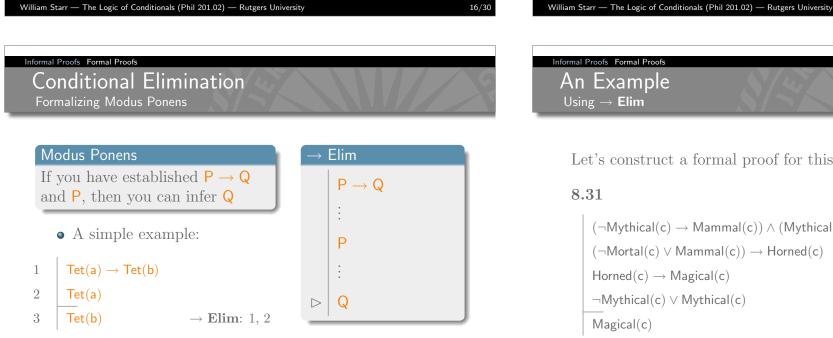
Exercise 8.5: Construct an informal proof of the argument. Here's the argument translated into FOL.

```
(Horned(u) \rightarrow (Elusive(u) \land Magical(u)))
      \wedge (\neg Horned(u) \rightarrow (\neg Elusive(u) \land \neg Magical(u)))
\negHorned(u) \rightarrow \negMythical(u)
Horned(u) \leftrightarrow (Magical(u) \lor Mythical(u))
```

nformal Proofs Formal Proofs Conditionals Additional Steps

Some additional equivalences that are useful for informal proofs:



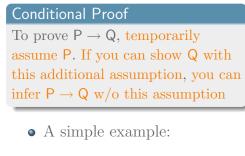


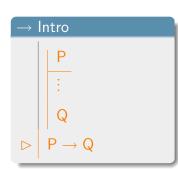
 $\bullet \rightarrow \text{Elim}$ is the formal counterpart to our informal rule called modus ponens

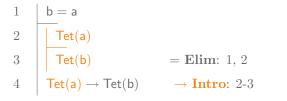
Let's construct a formal proof for this argument:

```
(\neg Mythical(c) \rightarrow Mammal(c)) \land (Mythical(c) \rightarrow \neg Mortal(c))
(\neg Mortal(c) \lor Mammal(c)) \rightarrow Horned(c)
Horned(c) \rightarrow Magical(c)
\negMythical(c) \lor Mythical(c)
```

Conditional Introduction Formalizing Conditional Proof



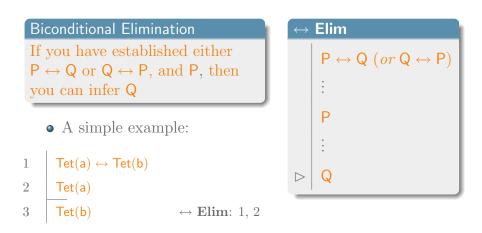




William Starr — The Logic of Conditionals (Phil 201.02) — Rutgers University

23/30

26/30



 ↔ Elim is the formal counterpart to our informal rule called biconditional elimination

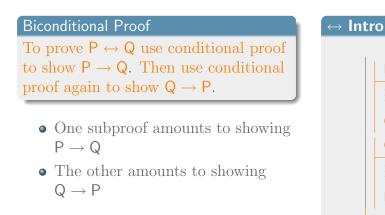
Informal Proofs Formal Proofs

Conditional Rules Another Example with \rightarrow Elim & \rightarrow Intro

Let's do exercise **8.32**. This involves a formal version of the informal proof we did for exercise **8.4**. We will use the informal proof to guide us.

Informal Proofs Formal Proofs

↔ Intro Formalizing Biconditional Proof



Q

Q

Ρ

 $\mathsf{P} \leftrightarrow \mathsf{Q}$

24/30

Let's do a proof in Fitch for a simple example that uses both \leftrightarrow **Intro** and \leftrightarrow **Elim**:

8.25 Transitivity of the Biconditional

$$\begin{array}{c|c} A \leftrightarrow B \\ \hline B \leftrightarrow C \\ \hline A \leftrightarrow C \end{array}$$

Informal Proofs Formal Proofs \leftrightarrow Elim & \leftrightarrow Intro In Class Exercise

You constructed an informal proof for this argument, now turn this into a formal proof:

Hint: You should do two subproofs and then apply \leftrightarrow **Intro** to get the conclusion

1 In the first subproof, assume Horned(c), show $Magical(c) \lor Mythical(c)$

In the second one, assume Magical(c) ∨ Mythical(c), show Horned(c). It may be easier to show Horned(c) using indirect proof (assume ¬Horned(c) and derive ⊥)

William Starr — The Logic of Conditionals (Phil 201.02) — Rutgers University

29/30

William Starr — The Logic of Conditionals (Phil 201.02) — Rutgers University