
Computing Counterfactual Assumptions

William B. Starr

Dept. of Philosophy, Rutgers University
26 Nichol Ave.

New Brunswick, NJ 08904

Abstract

This paper discusses the implementation of Veltman (2005)’s update semantics for
counterfactual conditionals in PLT Scheme.

1 Introduction

I will begin with one of the few interesting platitudes I’ve encountered in my
life:

The Unification Claim More often than many realize, formal semanticists
and computer scientists are doing the same thing.

To see why this is true, just consider what formal semanticists and computer
scientists do. The formal semanticist engineers a representation language with
a certain syntax. Then, using the recursive structure of that syntax, they define
a recursive interpretation function, usually denoted by J·K, that assigns
meanings to the formulae of their representation language, which — in the
simplest case — are (Boolean) truth-values. Similarly, the computer scientist
engineers a programming language with a certain syntax. Then, using the
recursive structure of that syntax, they design a program, usually called an
interpreter, that assigns meanings to programs written in their programming
language, which — in the simplest cases — are (Boolean) truth-values.

The recognition of this common enterprise has led to exciting interdisciplinary
exchanges and pushed the idea of computational semantics far beyond the
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project of teaching computers to interpret natural language. 1 The possibil-
ity of this exchange generates a powerful reason for creating a computational
model of a semantic theory: it represents the semantic theory in a format where
connections to familiar concepts from computer science are salient, thus facil-
itating collaboration and exchange across the disciplines. But this is not the
only reason for creating a computational model of a semantic theory. A com-
putational model also provides a powerful tool for replicating a semanticist’s
results and testing their theory on new data. Furthermore, it takes the first
step towards representing semantics in a way that could be linked to the other
modules of language and communication, i.e. phonology, syntax and pragmat-
ics, in a precise and powerful enough form that actual predictions about the
multi-tiered process of communication could be formulated. With all of these
reasons in mind, I conclude that creating a computational model of a semantic
theory is an interesting and worthwhile project.

In this paper I will develop a computational model for Veltman (2005)’s up-
date semantics for counterfactual conditionals. 2 3 The implementation
of this model will be carried out in PLT Scheme. 4 The following reasons
suggest that Scheme is a good choice for this task:

Reasons to Use Scheme
• Its syntax is similar to that of the logics used for counterfactuals, making

the relationship between the model and those logics more transparent.
• The mathematical concepts used in Veltman and others’ semantics can

be elegantly modeled using the Scheme’s list data-structure and Scheme’s
ability to quantify and λ-abstract over lists.

In the process of doing so, I will explain Veltman’s theory and replicate the
results he reports (Veltman 2005: 169-170). Before I get started, I’ll provide a
brief roadmap, so the reader knows just what I am up to at each point of the
process.

1 See Barker (2001), Blackburn & Bos (2005), Shan (2005).
2 Returning to the recent point of representing meaning in a way that facilitates
incorporation into an integrated theory of communication, I am particularly in-
terested in modeling Veltman’s theory in a way that will facilitate the use of its
output representations in models of probabilistic reasoning, causal inference and
default reasoning.(Halpern 2003; Pearl 2000) This side of the project will have to
be pursued and discussed at a later date.
3 In what follows, I will assume familiarity with conditionals, counterfactuals and
the general motivation for investigating them. For all of the necessary background
on these topics see Starr (2007).
4 For more on PLT Scheme see Felleisen et al. (2001) and the resources available
at http://www.plt-scheme.org/. I will assume a basic familiarity with Scheme,
along the lines of what one could acquire from taking CS503.
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1.1 Outline

1.1 Outline

This paper approaches the task of implementing Veltman’s theory incremen-
tally. At each stage I will present a logical language and a Scheme program
that models it. The first stage centers on (classical) propositional logic,
whose semantics is likely to be familiar — does truth-table or Boolean cir-
cuit ring a bell? (§2). At the next stage, the goal will be to model modal
propositional logic. (§3) This will amount to building an interpreter to do
possible worlds semantics. 5 With this in hand, I will be able to model
the even more fine-grained conception of meaning used in update seman-
tics.(§4) 6 At the final stage, the tools developed in §3 and §4 are teamed
up to build a model of the semantics for counterfactuals developed by Velt-
man.(§5) In closing, I will discuss what has been achieved and directions for
future research.(§6)

2 Propositional Logic in Scheme

Classical Propositional Logic (=: CPL) is a tool that will be familiar to
those that have either taken an elementary logic class, written a program or
studied Boolean circuits. In this section, I will be building a Scheme program
that models CPL . My explanation of this process will exploit the duality
between formal semantics and computer science stated in my justification the
Unification Claim. (§1) There were two parallels suggested there:

• A formal semanticist specifies the syntax of their representation language
where a computer scientist specifies the syntax of their programming lan-
guage.

• A formal semanticist defines a function J·K from syntactically well-formed
expressions of their language to a range of values where a computer scientist
writes an interpreter that outputs a value given a syntactically well-formed
expression of their programming language.

Accordingly, my discussion of the implementation of CPL in Scheme will begin
by describing, in parallel, the syntax of CPLand the syntax of a programming
language I will call Classical Propositional Scheme (=: CPL Scheme),
which is just a particular subset of the regular Scheme expressions. (§2.1)
Taking the next step, I will present the J·K function alongside an interpreter
for CPL Scheme. (§2.2) We will then see that our model’s predictions neatly

5 Reference
6 See Veltman (1996) for an extensive introduction to the framework of update
semantics.
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2.1 Syntax: CPL & CPL Scheme

fit those of CPL.

2.1 Syntax: CPL & CPL Scheme

Table 1: CPL Syntax

Ex p, q, r, . . .,¬,∧,∨,→, ), (

At p, q, r, . . .

Wff

A ∈ At =⇒ A ∈ Wff

A ∈ Wff =⇒ (¬A) ∈ Wff

A,B ∈ Wff =⇒ (A ∧ B) ∈ Wff

A,B ∈ Wff =⇒ (A ∨ B) ∈ Wff

A,B ∈ Wff =⇒ (A → B) ∈ Wff

Nothing else is in Wff

Table 2: Examples

Wff Not Wff

p (p)

(p ∧ q) (q ∧ p

(¬q) ¬q

((p ∧ q) → (r ∨ q)) → ∧p(

((¬p) ∧ (r → q)) (q ∧ ∨r)

((r ∧ q) ∨ p) ¬(r)

((r ∧ r) → r) qq

Isn’t there is a more succinct way of stating the syntax of CPL than Table 1?
Indeed there is. It is known as Backus Naur Form (=: BNF). 7

BNF for CPL
Wff ::= At | (¬Wff) | (Wff ∧Wff) | (Wff ∨Wff) | (Wff →Wff)

The basic idea is to read ‘|’ as ‘or’ and each term in-between as stating that
combining any two Wff in the way pictured by the term is also a Wff. In
future sections we will rely on BNF notation, but for symmetry here we will
display the parallel syntax of CPL Scheme in a tabular format:

Table 3: CPL Scheme Syntax

Ex 0, 1, 2, . . . , not, and, or, then, ), (

At 0, 1, 2, . . .

Wff

A ∈ At =⇒ A ∈ Wff

A ∈ Wff =⇒ (not A) ∈ Wff

A, B ∈ Wff =⇒ (A and B) ∈ Wff

A, B ∈ Wff =⇒ (A or B) ∈ Wff

A, B ∈ Wff =⇒ (A then B) ∈ Wff

Nothing else is in Wff

Table 4: Examples

Wff Not Wff

0 (0)

(0 and 1) (1 and 0

(not 1) (not 1

(0 and (1 or 2)) (0 and (1 or 2)

((not 0) then (2 or 1)) (0 and or)

((0 and 3) or (not 1)) not 0

(1 then (not 0)) 11

7 For more on Backus Naur Form notation see http://cui.unige.ch/
db-research/Enseignement/analyseinfo/AboutBNF.html.
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2.2 Semantics: CPL & CPL Scheme

We can also succinctly state the syntax for CPL Scheme using BNF notation:

BNF for CPL Scheme
Wff ::= At | (not Wff) | (Wff and Wff) | (Wff or Wff) | (Wff then Wff)

The clear correspondence between CPL and CPL Scheme is illustrated by the
following table:

Table 5: CPL - CPL Scheme Correspondence

CPL CPL Scheme

p 0

(p ∧ q) (0 and 1)

((¬p) → (r → p)) ((not 0) then (2 then 1))

(r ∧ (r → (p ∧ (r ∨ (¬q))))) (2 and (2 then (0 and (2 or (not 1)))))

2.2 Semantics: CPL & CPL Scheme

The semantics for CPL is built on the idea that the connectives ¬,∧,∨,→
are Boolean functions, i.e. functions from one or two binary values (True or
False) to a single binary value (True or False). Below, the function each
of these connectives is taken to express is summarized in the table for that
connective.

Table 6: f∧(x, y)

A B (A ∧ B)

T T T

T F F

F T F

F F F

Table 7: f∨(x, y)

A B (A ∨ B)

T T T

T F T

F T T

F F F

Table 8: f→(x, y)

A B (A → B)

T T T

T F F

F T T

F F T

Table 9: f¬(x)

A (¬A)

T F

F T

Of course, when we talk about the semantics of CPL, we have in mind a
function J·K that maps the Wff of CPL to some set of values. So, how does
settling on definitions of f∧(x, y), etc. further this project? It does so in
two ways. First, it allows us to settle on which values J·K will traffic in: the
Booleans, (T, F). Second, those functions collectively show us how to reduce
the question of which Boolean a complex formula denotes to the question of
which Boolean(s) it’s part(s) denote(s). For example, Table 6 shows us that
J(A ∧ B)K = f∧(JAK, JBK). This is progress, but we aren’t finished yet. This re-
duction trick is useless if we can just keep applying it. After all, we want J·K to
actually deliver a value at some point, not just amuse us endlessly with tricks.
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2.2 Semantics: CPL & CPL Scheme

So, when can’t we apply the trick? Well, the trick works for conjunctions,
disjunctions, negations and conditionals and, glancing back at the syntax of
CPL (Table 1), there is only one kind of Wff left: atomic ones. This implies
that we can only coherently ask after the value of JAK once we have fixed the
values of all the atomic formulae contained in A. This goal is achieved with
atomic valuations.

Atomic Valuations An atomic valuation v is a (total) function from At to
{T, F}.

We shall henceforth represent the dependence of our interpretation function
on a valuation by writing J·Kv. When we are finding the value of JAKv v either
tells us which row of the relevant table to look at — in the case that A is
complex — or it tells us directly which Boolean value A should get.

We are now ready to define our interpretation function for CPL.

Definition 1 (J·Kv)

JAKv =



v(A) if A ∈ At (1)

f¬(JBKv) if A = (¬B) (2)

f∧(JBKv, JCKv) if A = (B ∧ C) (3)

f∨(JBKv, JCKv) if A = (B ∨ C) (4)

f→(JBKv, JCKv) if A = (B → C) (5)

(Add some examples of how this definition works)

Our next goal is to build a CPL Scheme interpreter. Conveniently, we can write
this interpreter in Scheme itself. 8 As it turns out, the same basic strategy I
used for writing Definition 1 can be used to write this interpreter. Recall that
strategy:

• Use f∧(x, y)-f¬(x) to reduce the interpretation of complex formulae to the
interpretation of their parts.

• Use v to interpret v when the first strategy reaches an atomic formula.

Stated as such, it almost sounds like a description of a process. Indeed, thinking
of it in this way is helpful and motivates the following two questions:

• Q1: How should we represent f∧(x, y)-f¬(x) in Scheme in order to reduce

8 I will return to this point and its implications.
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2.2 Semantics: CPL & CPL Scheme

the interpretation of a complex formula to the interpretation of its parts?
• Q2: How should we represent v in Scheme in order to interpret atomic
WffCPLS?

I will address Q2 first.

2.2.1 Scheme Valuations

v is supposed to carry information about the truth-value of each atomic for-
mula. Recall that the atomic formulae of CPL Scheme are the natural numer-
als 0,1,2,.... One way of exploiting this choice is to represent v as a list
of truth-values where the truth-value of an atomic formula n is stored at the
nth position of v. For example, suppose our only atomic formulae are 0 and
1, and v is the list '(T F). The value at the 0th position of v is T, so v repre-
sents the valuation v where 0 is true. Given this innovation, we can define a
Scheme function (at-interp atom val) which returns Vn when given n and
'(V0,..., Vm), for n ≤ m.

Listing 1: at-interp.scm� �
1 (define (at-interp atom val)

2 (list-ref val atom))
� �
Table 10: at-interp.scm

Input Output

(at-interp 0 '(T F T)) T

(at-interp 1 '(T F T)) F

(at-interp 2 '(T F T)) T

I now turn to answering Q1.
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2.2 Semantics: CPL & CPL Scheme

2.2.2 Boolean Functions in Scheme

It will be simple enough to model f¬(x) in Scheme, so we will devote our
attention to f∧(x, y)−f→(x, y) for remainder of this section. Let’s take another
look at Tables 6-9. Notice that the bolded column is unique for each connective,
and think a little more about the information each row encodes and how it
uniquely characterizes that connective.

A B (A ∧ B)

T T T

T F F

F T F

F F F

A B (A ∨ B)

T T T

T F T

F T T

F F F

A B (A → B)

T T T

T F F

F T T

F F T

The first row of the final column represents the value returned when both
inputs are T; the second when the first is T and the second is F; the third
when the first is F and the second T; the fourth when both inputs are F. We
can think of this observation as a set of instructions telling us how to compute
a Boolean function given this special column of values:

• If both inputs are T, look up the first value of the column and return it.
• If the first input is T and the second F, look up the second value of the

column and return it.
• If the first input is F and the second T, look up the third value of the column

and return it.
• If the first input is F and the second F, look up the fourth value of the

column and return it.

This set of instructions can easily be transformed into a Scheme program. We
can think of this special column as a list of values, so and’s list is '(T F F F).
We can then define a function (abo op-list i1 i2) that takes such a list,
and two inputs, and returns a value in accordance with our instructions.

Listing 2: abo.scm� �
1 (define (abo op-list i1 i2)
2 (if (eq? i1 'T)
3 (if (eq? i2 'T)
4 (list-ref op-list 0)
5 (list-ref op-list 1))
6 (if (eq? i2 'T)
7 (list-ref op-list 2)
8 (list-ref op-list 3))))
� �
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2.2 Semantics: CPL & CPL Scheme

Table 11: abo.scm

Input Output

(abo '(T F F F) T T) T

(abo '(T F F F) F T) F

(abo '(T F T T) T F) F

(abo '(T T T F) F F) F

(abo '(T F F F) T F) T

2.2.3 Putting it All Together: interp.scm

Now we have all the pieces, we just need to put them together. The goal
is to write a function (interp A v) which takes a WffCPLS and a Scheme
valuation v and returns a value x such that JAKv = x, where A is the CPL
Scheme translation of A and v is the Scheme valuation corresponding to v. We
will define (interp A v) piece-wise, depending on A’s form; just as we did for
J·Kv in Definition 1,

Listing 3: interp.scm� �
1 (define (interp A v)

2 (cond

3 [(list? A)

4 (cond

5 [(and (= (length A) 3)

6 (eq? (list-ref A 1) 'and))
7 (abo '(T F F F) (interp (car A) v) (interp (list-ref A 2) v))]

8 [(eq? (list-ref A 0) 'not)
9 (cond

10 [(eq? (interp (list-ref A 1) v) 'T) 'F]
11 [(eq? (interp (list-ref A 1) v) 'F) 'T])]
12 [(and (= (length A) 3) (eq? (list-ref A 1) 'or))
13 (abo '(T T T F) (interp (car A) v) (interp (list-ref A 2) v))]

14 [(and (= (length A) 3) (eq? (list-ref A 1) 'then))
15 (abo '(T F T T) (interp (car A) v) (interp (list-ref A 2) v))]

16 [else '(that 's not a wff !)])]

17 [else

18 (list-ref v A)]))
� �
Lines 5-7 mirror line (3) in Definition 1, and covers the interpretation of for-
mulas like (A and B). Lines 8-11 mirror line (2) of Definition 1, interpreting
formulas like (not A). Disjunction is handled by lines 12-14 and parallels line
(4) of Definition 1. Similarly, lines 14-15 interpret formulas like (A then B) in
the same manner as formulas like (A → B) are treated in line (5) of Definition
1. Line 16 is there to cover the case where the program receives a 3-membered
list as input but the input is not a formula. Finally, lines 17-18 tell us to pro-
cess atomic formulae in the way outlined by at-interp.scm of §2.2.1 (see Listing
1), paralleling line (1) of Definition 1.
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3 Possible Worlds Semantics in Scheme

It is time to admit something. Our detour through atomic valuations (§2.2)
was neither optimal nor necessary.

Why not Optimal? Requiring a specific valuation v to compute JAKv and
(interp A v) amounts to requiring an agent to have complete information
about the atomic formulae in order to determine what they should think about
the truth-value of any given formula. This requirement clashes with the fact
that I can know that the faucet is not simultaneously running and not running
without knowing whether or not the faucet is running. More specifically, I don’t
need to know whether or not p and 0 are true to know that (¬(p ∧ (¬p))) and
(not (0 and (not 0))) are true. Furthermore, developing a semantics for
counterfactuals in Boolean logic is hopeless. 9

Why not Necessary? There is an alternative framework that can do ev-
erything the valuation-based strategy did while providing some key resources
needed to overcome both problems that I just raised for the valuation-based
approach. Why then the detour through the valuation-based approach? It is
familiar and makes the transition to more sophisticated frameworks easier on
our brains. We will now turn to our current poster-boy for semantic analysis:
a specific breed of possible-worlds semantics called Modal Propositional
Logic (=: MPL), and its Scheme cousin, Modal Propositional Scheme
(=: MPL Scheme, MPLS).

3.1 Semantics: MPL & MPL Scheme

We have only very simple additions to the syntax, which does not merit an
independent subsection:

BNF for MPL
WffMPL ::= WffCPL | (�WffMPL ) | (3WffMPL )

BNF for MPL Scheme
WffMPLS ::= WffCPLS | (nec WffMPLS) | (pos WffMPLS)

Intuitively, 3A means it is logically possible that A, while �A means it is logi-
cally necessary that A. In MPL formulae are taken to denote sets of possible
worlds. While this sounds exotic, we’ve already encountered possible worlds,
although we didn’t use that name for them. Possible worlds are just the atomic
valuations we saw back in §2.2, which are functions from At to {T, F}. We

9 See Starr (2007) for a detailed explanation of this latter point.
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3.1 Semantics: MPL & MPL Scheme

can now drop the v parameter from our interpretation function, making J·K
a function from WffMPL into P(W ). Of course, this means we are going to
have to rethink f∧(x,y) − f¬(x). Fortunately, we can redefine these functions in
terms of standard set-theoretic concepts. This is illustrated in the following
definition

Definition 2 (J·K)

JAK =



{w | w(A) = T} if A ∈ At (1)

W − JBK if A = (¬B) (2)

JBK ∩ JCK if A = (B ∧ C) (3)

JBK ∪ JCK if A = (B ∨ C) (4)

(W − JBK) ∪ JCK if A = (B → C) (5)

{w | ∃w′ ∈ JBK} if A = (3B) (6)

{w | JBK = W} if A = (�B) (7)

Although MPL doesn’t contain any new concepts, it does significantly enrich
the expressive power of the language. Adding the � and 3 allows us to express
logical truth and logical contingency in the object language, which is something
that was not possible when our interpretation function mapped formulae and
valuations to truth-values. Now that we have redefined meanings as sets of
possible worlds, it is worth asking whether or not it still makes sense to talk
about the truth of formulae. Indeed, there are two relevant concepts of truth
that we can define within the possible worlds framework, namely truth-at-a-
world and logical truth.

Definition 3 A is true at w, w |= A ⇐⇒ w ∈ JAK
Definition 4 A is logically true, |= A ⇐⇒ ∀w ∈ W : w ∈ JAK
Fact 1 ∃w ∈ W : w |= (�A) ⇐⇒ |= A

Fact 1 follows directly from Definitions 3, 4 and 2.7. This framework provides
us with a better model of how agents can use semantic reasoning to learn logi-
cal truths even if they don’t know which valuation most accurately represents
the actual world. They simply reason as follows. J(A ∨ ¬A)K = W , so regard-
less of which world is the actual one, the actual world must be in J(A ∨ ¬A),
and by Definition 3 (A ∨ ¬A) must be true at the actual world. However, this
advance comes with a cost. It also follows that all logical truths express the
same proposition, yet when I believe in the law of excluded middle I do not
seem simultaneously believing in Church’s Thesis. But, this is a matter to
be explored elsewhere. We will now move to building an interpreter for MPL
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3.1 Semantics: MPL & MPL Scheme

Scheme.

Just as in §2.2.1, I are going to model valuations as lists of truth-values, only
we are going to call them possible worlds now. To model sets of possible worlds,
I will use lists of possible worlds. Although have more structure than simple
sets, this choice will prove useful. What will our model of the set of all possible
worlds for three atomic formulae look like?

W 3 = '((T T T) (T T F) (T F T) (T F F) (F T T) (F F T) (F T F)

(F F F))

So, our new interpreter will need to deliver a list of lists of truth-values when
given a formula. The trick is getting it to produce the right lists. To do this,
we will also need to tell it what worlds are possible, i.e. W . We will also need
to mimic the operations of set union, complementation and intersection with
lists. Fortunately, someone has already defined these operations and they are
included in SRFI 1, which comes standard in PLT Scheme. With these oper-
ations we have everything we need to write our interpreter, which is pictured
in Listing 4 below.
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3.1 Semantics: MPL & MPL Scheme

Listing 4: w-interp.scm� �
1 (require (lib "1.ss" "srfi"))

2 (define (w-interp A W)

3 (cond

4 [(list? A)

5 (cond

6 [(and (= (length A) 2)

7 (eq? (list-ref A 0) 'not))
8 (lset-difference eq? W (w-interp (list-ref A 1) W))]

9 [(and (= (length A) 3)

10 (eq? (list-ref A 1) 'and))
11 (lset-intersection eq?

12 (w-interp (car A) W)

13 (w-interp (list-ref A 2) W))]

14 [(and (= (length A) 3)

15 (eq? (list-ref A 1) 'or))
16 (lset-union eq?

17 (w-interp (car A) W)

18 (w-interp (list-ref A 2) W))]

19 [(and (= (length A) 3)

20 (eq? (list-ref A 1) 'then))
21 (lset-union eq?

22 (lset-difference eq? W

23 (w-interp (list-ref A 0) W))

24 (w-interp (list-ref A 2) W))]

25 [(and (= (length A) 2)

26 (eq? (list-ref A 0) 'nec))
27 (if (equal?

28 (filter (lambda (x) (eq? (interp (list-ref A 1) x) 'T)) W)

29 W)

30 W

31 '())]
32 [(and (= (length A) 2)

33 (eq? (list-ref A 0) 'pos))
34 (if (empty?

35 (filter (lambda (x) (eq? (interp (list-ref A 1) x) 'T)) W))

36 '()
37 W)]

38 [else '(that was not a A!)])]

39 [else (filter (lambda (x) (eq? (list-ref x A) 'T)) W)]))
� �
The possible worlds framework presented here has been extended with the
notion of relative similarity between worlds in order to provide semantic anal-
yses for counterfactuals. 10 However, these approaches face serious difficulties
that I will not have space to discuss here. Instead, I will explore an alternative
approach developed in Veltman (2005) that has historical roots in Veltman
(1976, 1996) and Kratzer (1981, 1989).

10 Principally Stalnaker (1968) and Lewis (1973).
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4 Update Semantics in Scheme

Veltman (1996, 2005)’s framework of update semantics makes use of semantic
values like JAK but understands the meaning of a formula A to be something
more fine-grained, namely its information update potential. According
to this view, knowing the meaning of A amounts to knowing the change A
brings about in the cognitive state of anyone who wants to incorporate the
information conveyed by it. Formally speaking, the meaning [A] of A is an
operation on information states and S[A] denotes the result of applying [A] to
the information state S, i.e. it is the result of updating S with A. In this section
we will develop the formal details of this approach and implement it in Scheme.
In 5 we will use these two tools to offer an analysis and implementation of
counterfactuals along the lines pursued by Veltman.

4.1 Two Kinds of Update

Although its motivation will not be clear until we discuss counterfactuals,
Veltman (2005: 165) models an information state S as a pair consisting of two
sets of worlds US and FS. w ∈ US if each of the propositions that an agent in
state S considers to be a general laws holds in w. w ∈ FS if, for all the agent
in state S knows, w might be the actual world. This and a few other details
are summarized in the following definition.

Definition 5

• (Worlds) W n = {w | w : At 7→ {T, F}}, where | At |= n for finite n
• (Situations) In = {s | s ⊆ w ∈ W n}, i.e. s is a partial function from At

to {T, F}
• (States) S = 〈US, FS〉, where either (i) or (ii) holds:

(i) ∅ 6= FS ⊆ US ⊆ W n

(ii) FS = US = ∅

We can easily model each of these constructs in Scheme. We already have sets
of worlds, but we don’t have situations. Recall that a world is something like
'(T T F), assuming there are three atomic formulas. Situations are supposed
to be partial versions of worlds, i.e. contain as much or less information about
the atomic formulae. To do this I will model situations as follows:

Scheme Situations If w ='(v0,...,vn) is a Scheme world, then the result
of replacing i members of w with * is a Scheme situation, for 0 ≤ i ≤ n.

I have not been able to write a Scheme program that generates all of the
situations in any given world, but I have produced the following function that
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4.1 Two Kinds of Update

produces all of the situations in a world of length 1, 2, or 3.

Listing 5: sit-in.scm� �
1 (define (sit-in w)
2 (cond
3 [(= (length w) 1)
4 (list w)]
5 [(= (length w) 2)
6 (list (cons '* (list (list-ref w 1)))
7 (cons (car w) '(*))
8 w)]
9 [(= (length w) 3)

10 (list w
11 (cons '* (cdr w))
12 (cons '* (cons '* (cdr (cdr w))))
13 (cons (car w) (cons '* (cdr (cdr w))))
14 (cons (car w) (cons '* '(*)))
15 (cons (car w) (cons (car (cdr w)) '(*)))
16 (cons '* (cons (car (cdr w)) '(*))))]))
� �

Although this is hardly a solution to the problem, it will suffice for practical
purposes.

Implementing states in Scheme is a bit easier. We just take it to be a pair of
lists of worlds. For example the state 1 = 〈W 2, W 2〉 is:

'(((T T) (T F) (F T) (F F)) ((T T) (T F) (F T) (F F)))

Now that we have precise picture of what information states are, we can be
more precise about what it is to update an information state. We’ll begin with
our logical formalism first.

Definition 6 (Updates)

(1) a. S[A] = 〈US, FS ∩ JAK〉, if FS ∩ JAK 6= ∅
b. S[A] = 〈∅, ∅〉 =: 0, otherwise

(2) a. S[�A] = 〈US ∩ JAK, FS ∩ JAK〉, if FS ∩ JAK 6= ∅
b. S[�A] = 0, otherwise

As these conditions suggest, formulas with � update what the agent believes
about the general laws and by extension the actual world. In contrast, �-free
formulae merely updates the worlds compatible with what the agent knows
about the actual world. In general, these updates will communicate less, since
they rule out possibilities in a more contingent way. Also note that � does
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not nest.

Modeling these conditions is Scheme turns out to be pretty easy. The Scheme
program displayed in Listing 6 shows one way of doing it.

Listing 6: update.scm� �
1 (define (update S A W)

2 (cond

3 ; If non-law , update F only.

4 [(or (not (list? A))

5 (and (not (and (eq? (list-ref A 0) 'law )))
6 (not (eq? (list-ref A 1) '>))))
7 (if (not (equal? (lset-intersection equal?

8 (car (cdr S))

9 (w-interp A W)) ()))

10 (list (car S) (lset-intersection equal?

11 (car (cdr S))

12 (w-interp A W)))

13 (list () ()))]

14 ; If law , update L & F.

15 [(and (= (length A) 2)

16 (eq? (list-ref A 0) 'law))
17 (if (not (equal? (lset-intersection equal?

18 (car (cdr S))

19 (w-interp (car (cdr A)) W)) ()))

20 (list (lset-intersection equal?

21 (car S)

22 (w-interp (car (cdr A)) W))

23 (lset-intersection equal?

24 (car (cdr S))

25 (w-interp (car (cdr A)) W)))

26 (list () ()))]))
� �

5 Counterfactual Assumptions in Scheme

In this section, our goal will to be give a precise account of what state results
from updating a state S with (if − hadA)

(My current draft of this section is incredibly rough so I’ve chosen not to
include it. The Scheme implementation is finished, veltman.scm, but connecting
it to the formalism and motivating it piece-by-piece has proved to be a huge
undertaking. I hope to send along a draft with a finished version of this section
soon. But, I hope the finished program and this document are enough for the
moment.)
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